De formules zijn als geheugensteun bedoeld, er zijn geen vectoriële notaties gegeven.
$n=\frac{c}{v} \quad n_{\mathrm{a} \rightarrow \mathrm{b}}=\frac{n_{\mathrm{b}}}{n_{\mathrm{a}}} \quad \frac{n_{\mathrm{b}}}{n_{\mathrm{a}}}=\frac{\sin i_{\mathrm{a}}}{\sin r_{\mathrm{b}}} \quad \frac{1}{v}+\frac{1}{b}=\frac{1}{f} \quad G=-\frac{b}{v}$
$x=x_{0}+v_{x} \cdot t \quad v_{x}=v_{x, 0}+a_{x} \cdot t \quad x=x_{0}+v_{x, 0} \cdot t+\frac{a_{x}}{2} \cdot t^{2}$
$F_{\mathrm{z}}=m \cdot g$
$F_{\mathrm{v}}=k \cdot \Delta l$
$F_{\mathrm{g}}=G \frac{m_{1} \cdot m_{2}}{r^{2}}$
$F_{\mathrm{w}}=\mu \cdot F_{\mathrm{n}} \quad F_{\mathrm{cp}}=m \cdot v^{2} / R$
$W=\vec{F}_{x} \cdot \Delta \vec{x} \quad E_{k}=\frac{m \cdot v^{2}}{2} \quad E_{p}=m \cdot g \cdot h \quad E_{p}=k \cdot \frac{(\Delta \ell)^{2}}{2} \quad E_{p}=-G \frac{m_{1} \cdot m_{2}}{r}$
$p=\frac{F}{A} \quad p_{\mathrm{hyd}}=\rho \cdot g \cdot h \quad \quad F_{A}=\rho_{\mathrm{vl}} \cdot g \cdot V \quad p \cdot V=n \cdot R \cdot T$
$C=\frac{Q}{\Delta T}$
$c=\frac{Q}{m \cdot \Delta T} \quad l=\frac{Q}{m}$
$\Delta U=Q-W$
$C_{p}-C_{V}=R \quad \gamma=\frac{C_{p}}{C_{V}} \quad p_{1} \cdot V_{1}^{\gamma}=p_{2} \cdot V_{2}^{\gamma}$
$C_{V}(1$ atomig gas $)=\frac{3}{2} R \quad C_{V}(2$ atomig gas $)=\frac{5}{2} R$
$|F|=k \frac{\left|Q_{1}\right| \cdot\left|Q_{2}\right|}{r^{2}} \quad E=\frac{F}{Q} \quad|E|=k \frac{|Q|}{r^{2}} \quad V=k \frac{Q}{r} \quad E=\frac{U}{d}$
$U=R \cdot I \quad R_{s}=R_{1}+R_{2} \quad \frac{1}{R_{p}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$
$Q=R \cdot I^{2} \cdot \Delta t \quad P=U \cdot I$
$U_{R}=R \cdot I$
$U_{C}=\frac{1}{C \cdot \omega} I$
$U_{L}=L \cdot \omega \cdot I$
$F=B \cdot I \cdot l \quad\left(\alpha=90^{\circ}\right) \quad F=B \cdot Q \cdot v \quad\left(\alpha=90^{\circ}\right)$
$B=\mu_{0} \cdot \frac{I}{2 \cdot \pi \cdot d} \quad B=\mu_{0} \cdot \frac{N \cdot I}{l}$
$\Phi=B \cdot A \cdot \cos \alpha \quad U_{i}=-N \cdot \frac{\Delta \Phi}{\Delta t}$
$E=m \cdot c^{2} \quad E=h \cdot f \quad A_{\text {gemid }}=-\frac{\Delta N}{\Delta t} \quad A(t)=\lambda N(t)$
$N(t)=N_{0} \cdot e^{-\lambda \cdot t}=N_{0} \cdot 2^{-t / T_{1 / 2}} \quad \lambda=\frac{0,693}{T_{1 / 2}} \omega=\frac{2 \pi}{T} \quad f=\frac{1}{T} \quad V_{\mathrm{bol}}=4 . \pi \cdot R^{3} / 3$
$n_{\text {glas }}=1,50 \quad n_{\text {plexi }}=1,49 \quad n_{\text {water }}=1,33 \quad c=299792458 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
$g=9,81 \mathrm{~m} \mathrm{~s}^{-2}$
$\vartheta=-273,15^{\circ} \mathrm{C} \quad \Leftrightarrow \quad T=0 \mathrm{~K}$
$R=8,31 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
$k=8,99.10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2}$
$G=6,673 \cdot 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$
$\rho_{\text {water }}=1,00 \cdot 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$
$\rho_{\text {kwik }}=13,6 \cdot 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$
$\rho_{\text {lucht }}=1,29 \mathrm{~kg} \mathrm{~m}^{-3}$
$p_{0}=1,01 \cdot 10^{5} \mathrm{~Pa}=1,01 \mathrm{bar}$
$c_{\text {water }}=4,19 \cdot 10^{3} \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1} \quad c_{\mathrm{ijs}}=2,09 \cdot 10^{3} \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1} \quad c_{\text {stoom }}=2,01.10^{3} \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
$l_{\text {water-ijs }}=334.10^{3} \mathrm{~J} \mathrm{~kg}^{-1}$ $l_{\text {water-stoom }}=2260.10^{3} \mathrm{~J} \mathrm{~kg}^{-1}$
$\mu_{0}=4 \pi \cdot 10^{-7} \mathrm{~T} \mathrm{~m} \mathrm{~A}^{-1}$
$N_{\mathrm{A}}=6,02 \cdot 10^{23} \mathrm{~mol}^{-1}$
$m_{\mathrm{e}}=9,11.10^{-31} \mathrm{~kg}$
$m_{\mathrm{p}}=1,673 \cdot 10^{-27} \mathrm{~kg}$
$m_{\mathrm{n}}=1,675 \cdot 10^{-27} \mathrm{~kg}$
$1 \mathrm{u}=1,66 \cdot 10^{-27} \mathrm{~kg}$
$1 \mathrm{eV}=1,602 \cdot 10^{-19} \mathrm{~J}$
$e=1,60 \cdot 10^{-19} \mathrm{C}$
$h=6,626.10^{-34} \mathrm{~J} . \mathrm{s}$
$Q_{\text {elektron }}=-e \quad Q_{\text {positron }}=-Q_{\text {elektron }} \quad Q_{\text {muon }}=Q_{\text {elektron }} \quad Q_{\text {foton }}=0$

